2015年3月11日水曜日

相加・相乗・調和平均による評定と学生の負担

問.進級するためには、中間試験と期末試験の平均点が50点以上でなければならない。ある学生の中間試験の点数は$x$点だったとする。彼が無事に進級するためには、期末試験で何点とればよいでしょうか(試験は100点満点とする)。

という問いについて考えます。単に「平均」といえども、その種類はたくさんあります。成績で平均をつけるとしたら相加平均をとるに決まっているだろう!と思う人が多いと思いますが、自分の大学では一部の科目において成績評定は相乗平均によって評価されます。

先日の記事では、「相加平均」「相乗平均」「調和平均」を紹介し、それらに成立する不等式を紹介しました(詳細)。これによると、同じ二つの値において、調和平均がもっとも小さく、相加平均がもっとも大きくなります。相加平均を採用した場合とそれ以外を採用した場合の学生の負担の差について見てみましょう。

必要な知識
- 相加・相乗・調和平均の関係(詳細
- 相加平均・相乗平均・調和平均の定義

2015年3月10日火曜日

相加・相乗・調和平均の関係

二つの正の値$a,b$において相加平均(算術平均)は
\begin{equation*}
\frac{a+b}{2}
\end{equation*}
と定義され、相乗平均(幾何平均)は
\begin{equation*}
\sqrt{ab}
\end{equation*}
で定義されることは高校の教科書に載っています。また、あまり知られていませんが、調和平均というものも存在し、これは
\begin{equation*}
\frac{2}{\frac{1}{a}+\frac{1}{b}}
\end{equation*}
で定義されています。この調和平均は、平均の速さを求める問題や、ばね定数の直列合成、並列回路における抵抗値の計算などにおいて利用されています。調和平均がどこで用いられているかは稿を改めます。

相乗平均の方が相加平均よりも小さくなるという「相加・相乗平均の関係」は知られていますが、調和平均を含めた「相加・相乗・調和平均の関係」というものがあります。

結論を書けば、
\begin{equation*}
調和平均 \leq 相乗平均 \leq 相加平均
\end{equation*}
となるのですが、本稿ではこの関係を証明します。

必要な知識
- 簡単な不等式の証明
- 相加・相乗平均の関係
- 3次関数の増減表


2015年3月9日月曜日

大きな数に関するトピック5 -3^3^3^3と10^80の比較。宇宙の全原子数との比較

指数のタワー表記の記事(詳細)において、
\begin{equation*}
3 \uparrow\uparrow4 = 3^{3^{3^3}}=3^{3^{27}}=3^{7625597484987} \\
\end{equation*}
という数が出てきました。指数のタワー表記がいかに簡単に膨大な数を表現できるかを実感してもらうために、この数がどれくらいの大きさのものなのかを考えます。

今まで、アボガドロ定数や地球の表面積、地球や宇宙の年齢と数を比較してきましたが、今回は宇宙にある(観測可能な)全原子数$10^{80}$と比較します。

必要な知識
- 指数のタワー表記(詳細)
- 常用対数の扱い

当記事は、現在 iPhone からの閲覧で数式が一部、正しく表示されないとの報告を受けて対処中です。ご迷惑をおかけしております。

大きな数に関するトピック4 ―地球の表面に何文字かけるか―

問1.地球の表面に文字をびっしり書き占めたら何文字かくことができるでしょうか。

問2.18gの水に含まれる水分子の一つ一つに番号をふっていき(注1)、それを順に書き出すとしたら、どれぐらいの面積が必要でしょうか。


先日の記事でも扱いましたが、${\rm H_2O}$の質量数は18gなので、水18gには$6.0×10^{23}$個の原子が含まれています。アボガドロ定数

\begin{equation*} {N_A=6.02214129×10^{23}} \end{equation*}

は、1molに含まれる粒子数を表す定数でした。本稿では、上の問をヒントに$10^{23}$という数の大きさを考えます。


必要な知識
- 指数の簡単な取扱い
- 比例式の計算
- 面積の換算
- アボガドロ定数

負の整数の多重階乗について(ガンマ関数不要)

先日の記事では、$0!=1,0!!=1$など、0のn重階乗が0と定義される理由を説明しました(詳細)が、この考え方を応用して、負の整数の多重階乗が理解できます。つまり、
\begin{equation*}
(-1)!!,(-4)!!!
\end{equation*}
などが定義できるということです。なお、(-2)!や(-1)!が発散することも本稿で確認します。

必要な知識
- n重階乗について(詳細
- 0のn重階乗について(詳細)
- 高校で学習する程度の極限