ラベル 平均 の投稿を表示しています。 すべての投稿を表示
ラベル 平均 の投稿を表示しています。 すべての投稿を表示

2015年3月11日水曜日

相加・相乗・調和平均による評定と学生の負担

問.進級するためには、中間試験と期末試験の平均点が50点以上でなければならない。ある学生の中間試験の点数は$x$点だったとする。彼が無事に進級するためには、期末試験で何点とればよいでしょうか(試験は100点満点とする)。

という問いについて考えます。単に「平均」といえども、その種類はたくさんあります。成績で平均をつけるとしたら相加平均をとるに決まっているだろう!と思う人が多いと思いますが、自分の大学では一部の科目において成績評定は相乗平均によって評価されます。

先日の記事では、「相加平均」「相乗平均」「調和平均」を紹介し、それらに成立する不等式を紹介しました(詳細)。これによると、同じ二つの値において、調和平均がもっとも小さく、相加平均がもっとも大きくなります。相加平均を採用した場合とそれ以外を採用した場合の学生の負担の差について見てみましょう。

必要な知識
- 相加・相乗・調和平均の関係(詳細
- 相加平均・相乗平均・調和平均の定義

2015年3月10日火曜日

相加・相乗・調和平均の関係

二つの正の値$a,b$において相加平均(算術平均)は
\begin{equation*}
\frac{a+b}{2}
\end{equation*}
と定義され、相乗平均(幾何平均)は
\begin{equation*}
\sqrt{ab}
\end{equation*}
で定義されることは高校の教科書に載っています。また、あまり知られていませんが、調和平均というものも存在し、これは
\begin{equation*}
\frac{2}{\frac{1}{a}+\frac{1}{b}}
\end{equation*}
で定義されています。この調和平均は、平均の速さを求める問題や、ばね定数の直列合成、並列回路における抵抗値の計算などにおいて利用されています。調和平均がどこで用いられているかは稿を改めます。

相乗平均の方が相加平均よりも小さくなるという「相加・相乗平均の関係」は知られていますが、調和平均を含めた「相加・相乗・調和平均の関係」というものがあります。

結論を書けば、
\begin{equation*}
調和平均 \leq 相乗平均 \leq 相加平均
\end{equation*}
となるのですが、本稿ではこの関係を証明します。

必要な知識
- 簡単な不等式の証明
- 相加・相乗平均の関係
- 3次関数の増減表