二つの正の値$a,b$において相加平均(算術平均)は
\begin{equation*}
\frac{a+b}{2}
\end{equation*}
と定義され、相乗平均(幾何平均)は
\begin{equation*}
\sqrt{ab}
\end{equation*}
で定義されることは高校の教科書に載っています。また、あまり知られていませんが、調和平均というものも存在し、これは
\begin{equation*}
\frac{2}{\frac{1}{a}+\frac{1}{b}}
\end{equation*}
で定義されています。この調和平均は、平均の速さを求める問題や、ばね定数の直列合成、並列回路における抵抗値の計算などにおいて利用されています。調和平均がどこで用いられているかは稿を改めます。
相乗平均の方が相加平均よりも小さくなるという
「相加・相乗平均の関係」は知られていますが、調和平均を含めた
「相加・相乗・調和平均の関係」というものがあります。
結論を書けば、
\begin{equation*}
調和平均 \leq 相乗平均 \leq 相加平均
\end{equation*}
となるのですが、本稿ではこの関係を証明します。
必要な知識
- 簡単な不等式の証明
- 相加・相乗平均の関係
- 3次関数の増減表