2015年3月9日月曜日

大きな数に関するトピック5 -3^3^3^3と10^80の比較。宇宙の全原子数との比較

指数のタワー表記の記事(詳細)において、
\begin{equation*}
3 \uparrow\uparrow4 = 3^{3^{3^3}}=3^{3^{27}}=3^{7625597484987} \\
\end{equation*}
という数が出てきました。指数のタワー表記がいかに簡単に膨大な数を表現できるかを実感してもらうために、この数がどれくらいの大きさのものなのかを考えます。

今まで、アボガドロ定数や地球の表面積、地球や宇宙の年齢と数を比較してきましたが、今回は宇宙にある(観測可能な)全原子数$10^{80}$と比較します。

必要な知識
- 指数のタワー表記(詳細)
- 常用対数の扱い

当記事は、現在 iPhone からの閲覧で数式が一部、正しく表示されないとの報告を受けて対処中です。ご迷惑をおかけしております。

大きな数に関するトピック4 ―地球の表面に何文字かけるか―

問1.地球の表面に文字をびっしり書き占めたら何文字かくことができるでしょうか。

問2.18gの水に含まれる水分子の一つ一つに番号をふっていき(注1)、それを順に書き出すとしたら、どれぐらいの面積が必要でしょうか。


先日の記事でも扱いましたが、${\rm H_2O}$の質量数は18gなので、水18gには$6.0×10^{23}$個の原子が含まれています。アボガドロ定数

\begin{equation*} {N_A=6.02214129×10^{23}} \end{equation*}

は、1molに含まれる粒子数を表す定数でした。本稿では、上の問をヒントに$10^{23}$という数の大きさを考えます。


必要な知識
- 指数の簡単な取扱い
- 比例式の計算
- 面積の換算
- アボガドロ定数

負の整数の多重階乗について(ガンマ関数不要)

先日の記事では、$0!=1,0!!=1$など、0のn重階乗が0と定義される理由を説明しました(詳細)が、この考え方を応用して、負の整数の多重階乗が理解できます。つまり、
\begin{equation*}
(-1)!!,(-4)!!!
\end{equation*}
などが定義できるということです。なお、(-2)!や(-1)!が発散することも本稿で確認します。

必要な知識
- n重階乗について(詳細
- 0のn重階乗について(詳細)
- 高校で学習する程度の極限

0! = 1 の理由と0のn重階乗(0!,0!!,0!!! …)

階乗の定義に際して、\begin{equation*}
0! = 1
\end{equation*}
が約束されています。この理由は何でしょうか。また、
\begin{equation*}
0!!
\end{equation*}
はいくつになるのでしょうか。

必要な知識
- 階乗の定義
- 組み合わせ ${}_n \mathrm{C} _r$ の計算方法

高校数学で学ぶ演算子とその線形性

何らかの(数学的)処理を指示するものを「演算子」と呼びます。
たとえば、"+"という演算子はふたつの数を足すことを意味し、"√"という演算子は根号の中の平方根を求めることを意味します。

今回は、高校数学で登場する演算子とその線形性について注目してみます。

必要な知識
- とくになし