3^{3^3}
\end{equation*}
はいくつだろうか。729になるだろうか?
必要な知識
- 中学で学習する程度の指数
\begin{equation*}
2^{3^4}
\end{equation*}
というのは、$ 2^3 $を$4$乗したものではなく、$2$を$3^4$乗したのものを意味する。
つまり
\begin{equation*}
2^{3^4} = 2^{ \left(3^4 \right)} \\
2^{3^4} \neq \left( 2^3 \right)^4
\end{equation*}
であり、右から計算されることに注意されたい。よって、
\begin{equation*}
3^{3^3}=3^{27} = 7625597484987
\end{equation*}
である。
こうした数の具体的な大きさを見てみよう。
次の表は、$x!,x^x,x^{x^x}$を計算した結果である。空欄は計算が技術的にできなかった箇所。
次のグラフは$y=x^x$と$y=x^{x^x}$をプロットしたものである。
次のグラフは$y=x^{x^x}$と$ y=x^{x^{x^x}} $をプロットしたものである。
いずれも凄まじさが分かる。
タワー表記
\begin{equation*}3^{3^{3^{3^3}}}
\end{equation*}
と書いていくのは大変なので、次のような表記(タワー表記と呼ばれる)をすることもある。
\begin{eqnarray*}
3 \uparrow\uparrow2 &=& 3^3=27 \\
3 \uparrow\uparrow3 &=& 3^{3^3}=3^{27}=7625597484987 \\
3 \uparrow\uparrow4 &=& 3^{3^{3^3}}=3^{3^{27}}=3^{7625597484987} \\
\end{eqnarray*}
なお、この$3 \uparrow\uparrow4$という数がいかに大きいかはこちらを参考(クリック)。
参考:Wolfram
0 件のコメント:
コメントを投稿
texが使えます。