2015年3月15日日曜日

ベクトルの内積はなぜcosで定義されるのか。

高校の教科書では、$\vec{a}$と$\vec{b}$の成す角が$\theta$のとき、内積$\vec{a}\cdot \vec{b}$を次のように定義するとあります。

\begin{equation*}
\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos \theta
\end{equation*}

しかし、教科書にはその理由が書いてありません。



本稿では、なぜベクトルの内積がこのように定義されるのかを考えます。なお、本稿では、向きと大きさを持つベクトル量に対して、向きを持たない量をスカラ量と呼びます。

必要な知識
- 余弦定理
- ベクトルの基本的性質


逆三角関数の導入 アークサイン,アークコサイン,アークタンジェント

三角関数の逆関数を逆三角関数と言います。本稿では高校生の知識のみで逆三角関数を導入します。


必要な知識
- 逆関数についての基本的な性質(詳細
- 三角関数
- 弧度法

2015年3月14日土曜日

なぜ逆関数はf^(-1)で表すのか、なぜy=xに対称なのか。

関数$y=f(x)$の逆関数は$y=f^{-1}(x)$と書かれました。逆関数をなぜ-1乗と書くのでしょうか

また、逆関数ともとの関数はなぜ$y=x$に対称なのでしょうか。

本稿では、
1.逆関数の定義のおさらい
2.逆関数を$f^{-1}$乗と書く理由の説明
3.逆関数ともとの関数が$y=x$に対して対称であることの証明
を扱います。

逆関数という言葉は数学IIIで学習するものですが、本稿は数学IIIが未習のひとでも理解できます。

必要な知識
- 関数を$y=f(x)$と書くことになれていること

絶対値を含む関数 y=f(|x|),|f(x)|,|f(|x|)|

絶対値を含む関数が苦手な人が多いです。適当な関数$y=f(x)$に対して、

\begin{equation*}
y=|f(x)|
\end{equation*}

がどんな形になるか即答できる人は多いですが、

\begin{equation*}
y=f(|x|)
\end{equation*}

がどんな形になるか即答できる高校生は少ないです。さらに

\begin{equation*}
y=|f(|x|)|
\end{equation*}

はどういう形になるでしょう。

本稿ではこうした絶対値を含む関数を見てみます。



必要な知識
- 実数の絶対値の意味
- 三角関数のグラフの形

2015年3月12日木曜日

実数の絶対値と複素数の絶対値の根本的な違い

先日の記事でも紹介したように、虚数同士の大小を(私たちのよく知る意味においては)比較することはできません(詳細)。一方で、虚数の絶対値は定義することができます。しかし、その扱いには注意が必要です。

問.$|z-2|=1$を満たす複素数$z$を求めよ。

これに対して、ある学生は以下のように考えました。

まずは絶対値記号をはずして
\begin{equation*}
z-2=\pm1
\end{equation*}
より、
\begin{equation*}
z=1,3
\end{equation*}
実はこれは間違いです。どこがおかしいか説明できますか。

本稿では、

1.複素平面についておさらい
2.複素数の絶対値の定義を納得する
3.実数の絶対値と複素数の絶対値の根本的な違いを指摘する
4.この問いに対する正しい答えを導く

ことを行います。

必要な知識
- 実数の絶対値の定義や絶対値記号の外し方
- 複素数と虚数の定義(詳細)
- 円の方程式$x^2+y^2=r^2$